data

. KNOWLEDGE
Iku

» Data Preparation » Visual Recipes

Concept | Window recipe

Watch the video v
In this lesson, let’s look at a powerful function for data enrichment, Windows. This lesson will
cover:

¢ A conceptual overview of the Window recipe.

* A practical demo of its advanced use in Dataiku on credit card transactions data.

/" Note

If you are already familiar with the concept of Windows, you can skip to the practical demo or move on to the
tutorial.

A Window Cousin: The Group By Recipe

Before talking about the Window recipe, let's look at a related recipe, Group By.

A Group by recipe has two important components:

e The group key

e The aggregations

Feedback

https://knowledge.dataiku.com/
https://knowledge.dataiku.com/
https://knowledge.dataiku.com/latest/data-preparation/index.html
https://knowledge.dataiku.com/latest/data-preparation/visual-recipes/index.html
https://doc.dataiku.com/dss/latest/other_recipes/window.html
https://knowledge.dataiku.com/
https://knowledge.dataiku.com/

data

GROUPING COMPONENTS =

®O
®G

1. GROUP KEY 2. AGGREGATIONS

ACADEMY

Let's first take a customer orders dataset. Then, we choose a group key, in this case,
Customer. And then choose to compute some aggregations, in this case the average amount
of each order.

Notice the dimensionality of our dataset has changed. We have just one row per grouping key,
rather than one row per order.

compute_orders_prepared_by_tshirt_category Settings Input/Output Advanced History ACTIONS | «

Execution: Engine: In-database (SQL) %

Q

S VIEWQUERY = & CONVERT TO SQL RECIPE

Output column names

1 (string) tshirt_category

(
2 (date) order_date_max
3 (double) sale_value_sum
° 4 (bigint) count

Group

Engine: In-database (SQL) &

After applying a window

You may want to make these same grouped calculations on a dataset, while keeping the
structure of the dataset the same. This is where we can use a window function.

A window function can perform this same grouped calculation, and append the values as a
new column to the original dataset. This can help us make easy grouped comparisons or
generate meaningful features for a machine learning model.

data

AFTER WINDOW
r o |

ACADEMY

2020-07-12 Carol 3.33
2020-07-10 Carol 3 3.33
2020-01-25 Alice 1 3.5
2020-01-05 Bob 4 4
2020-07-21 Alice 6 3.5
2020-10-01 Carol 5 3.

We can use a window to make calculations like:

e Rank - is this a customer's first order? second? third?
e Lag - perhaps the quantity of each customer's previous order.

* A moving average can capture a customer’s average order quantity over the previous three
days.

Window components

A window function has two important components:

¢ The window definition

e The aggregations

data

WINDOW COMPONENTS =

['T]

1. WINDOW DEFINITION 2. AGGREGATIONS

ACADEMY

These are similar to the components of a group by, with a few additions.

Window definition

Let’'s start with the window definition:

* First, we choose the partition, or column to group by — in this case, the Customer.

e Then, we order the rows within each partition by another column — in this case, by date, in
descending order.

e We can optionally define a window frame based on the ordering column, in this case, the
date. This can limit our aggregation calculation to just a subset of rows within each partition.

1. WINDOW DEFINITION ol
- Y
order Cotumn(s) Jm- partitioning
2020-67-10 Carol Column(s)
2020-07-12 Carol 2
2020-16-61 Carol 5
Window Frame 2020-01-25 Alice 1
*(Optional) 2020-07-21 Alice 6

2020-01-05 Bob

Window aggregations

Now let's look at the second component of a Window, the aggregations.

For each customer partition, ordered by date, and bounded by a window frame, what do you
want to calculate?

Here, we chose to calculate the average amount — where the window definition was partition
by customer, order by date, and no window frame. Remember, constricting the window frame
is optional.

If we wanted to set a window frame which looks back at just the 3 previous months, and does
not look at orders made in the future, our average amount calculation would look like this.

data

2. AGGREGATIONS
e Lo | Qe e

ACADEMY

2020-07-10 Carol 2820-07-10 Carol

2020-07-12 Carol 2 |E| 2026-07-12 Carol 2 2.5
2026-10-01 Carol 5 2020-10-01 Carol 5 3.33
2020-01-25 Alice 1 2020-01-25 Alice 1 1
2020-07-21 Alice 6 2020-07-21 Alice 6 6
2020-01-05 Bob 4 2020-01-05 Bob 4 4

Let's take a close look at why setting this window frame changes our column values.

e We are partitioning our dataset by customer, ordering by date, setting a window frame of
the previous 3 months till the current row'’s date, and then computing an average amount
over this window definition.

e Same as before, we partition by customer, and order our rows within each partition by date.

» Then, we compute our average amount aggregation.

For Carol’s first purchase, she has no purchase history, so the rolling three-month average is
just the current purchase amount, 3. For her second purchase, we can average the amounts
from the current purchase and the previous purchase, as that one happened within the last
three months. For her third purchase, we can average the amounts from all three of her
purchases which all happened within the last three months.

Then, with Alice's first purchase, we restart our average calculation, just considering the
current purchase amount. For Alice’s second purchase, we again restart our average

calculation. Her first purchase happened more than 3 months ago, so we exclude it from the

aggregation calculation.

Bob only has one purchase, so his rolling 3 month average amount is just 4.

The Window recipe in Dataiku

Now, let's take a closer look at how Windows work in Dataiku with some more realistic data.

We start with a dataset of credit card transactions. Notice that we have a timestamp for each
transaction, a transaction ID, a purchase amount, a merchant, and a merchant subsector,

among other information.

transactions [

Summary Explore Charts Statistics Status History Settings
Viewing dataset sample configure sample

transaction_id purchase_date purchase_amount merchant_id merchant_subsector card_id merchant_state
bigint date double string string string string
Integer Date Decimal Text v | Text Text US State

257301 2018-01-03T00:00:00.000Z 199.21 M_ID_240a3c246e consumer electronics C_ID_f6al3687ee Vermont

33235 2017-03-16T00:00:00.000Z 185.94 M_ID_240b53be50 internet C_ID_d60383159e Washington

219380 2017-12-01T00:00:00.000Z 216.18 M_ID_240b53be50 internet C_ID_84355059f1 Washington

303027 2018-02-18T00:00:00.000Z 72.92 M_ID_240efb936f internet C_ID_613f596fc2

322183 2018-04-05T00:00:00.000Z 82.54 M_ID_24104619df health care services C_ID_cabe5c54cf Ohio

104950 2017-07-22T00:00:00.000Z
218366 2017-11-30T00:00:00.000Z
245627 2017-12-23T00:00:00.000Z
242724 2017-12-21T00:00:00.000Z

20643 2017-02-18T00:00:00.000Z

66.5

66.48

162.79

98.59

34.56

M_ID_24184ed0f7
M_ID_242f8a9132
M_ID_24184ed0f7T
M_ID_24184ed0f7

M_ID_241e176749

luxury goods
consumer electronics
luxury goods
luxury goods

retail apparel

C_ID_fbdb438c8c
C_ID_ea2lelldes
C_ID_f8bcObc46a
C_ID_930ad86bla

C_ID_6c78538fb6

North Carolina
South Dakota
North Carolina

North Carolina

Here, we want to look at the average and the sum of purchase amounts for a given merchant
subsector, as well as for each individual merchant. But imagine we want these aggregations to
include only today and the previous 3 days.

At the same time, we want to keep each transaction in a separate row so that we can compare
the individual purchase amount to the average for this merchant and this subsector.

data

BUSINESS CASE =

For each in a given

ACADEMY

what is the average & sum o Aggregations
purchase amount

This is a type of problem that the Window recipe is great for: keeping the structure of the data
the same while getting some additional information by looking at similar rows.

Defining the window

On the Window definition step, let's turn on Partitioning and choose merchant_subsector,
because we want to find the sum and average amount of transactions made to each merchant.
Additionally, we also want to look at the sum and average purchase amount for each merchant
ID in each subsector, so we can add a second partitioning column — merchant_id.

Then let's order our rows within each partition by purchase_date in ascending order.

The third option — Window Frame — limits the number of rows your window can look at in each
grouping. Let's turn it on:

e We have the option to limit the number of rows taken into account based on a value range
from the order column, which in this case is the purchase date.

e Let's select this option and limit the rows to compute aggregations to only reflect the
transactions made in the past 3 days, as well as the present day.

Visual Recipes 102 Recipes Dataiku Academy Q ¢

Compute_transactions_windows Summary Settings Input / Output Advanced History B - ACTIONS

Window definitions

The window recipe enables you to compute aggregations. Contrary to the group recipe, it outputs as many rows as in the input dataset.

Prefix:

N N
parTimioninG coumns (@I) orbercotumns (@) winoow rrave @)

merchant_subsector v)x l= | purchase_date v)x @ Window frames enable you to limit the
i merchant_id v X +ADD COLUMN number of rows taken into account to compute
° aggregations.
+ADD COLUMN - o
N . Example: compute sliding averages for time
Windows definitions .
series.
Limit window on a value range of the order col. ¥
Use lower bound
Aggregations
Lower bound: 3 <
z Use upper bound
Upper bound: 0 z
Days a
+ ADD WINDOW

In-database (SQL) %

Choosing aggregations

The Aggregations step lets you choose the aggregate metrics that our window will output for
each grouping.

Here, we will choose the average, and sum of the purchase amount for each transaction, which
will be aggregated by merchant and merchant subsector.

A Visual Recipes 102 Recipes Dataiku Academy Q

compute_transa(_tions_windows Summary Settings Input / Output Advanced History ACTIONS
Compute rank for each row
You can compute the "ranks" of each row, according the ordering defined in the windows definitions, with the following methods.
Arank is computed for each defined window.
Compute: Rank Denserank Rownumber Cumulative distribution Quantile
Compute aggregations for each field
Each aggregation will be computed separately within each window.
° Ex: if you defined 2 windows, selecting "min" for a column will compute two different aggregations.
Windows definitions (] 0/7 « [J Hide unused variables A
H [transaction_id bigint Min Max Avg Sum Concat Std.dev. Count First Last Lag LagDiff Lead LeadDiff
. [C] purchase_date date GEGETEE Mink Max Avg Sum Concat Std.dev. Count First Last Lag LagDiff Lead LeadDiff
Aggregations
[[] purchase_amount double Min Concat Std.dev. Count First Last Lag LagDiff Lead LeadDiff
[[] merchant_id string Min Concat Count First Last Lag Lead
[[] merchant_subsector string Min Max Concat Count First Last Lag Lead
[] card_id string Min Max Concat Count First Last Lag Lead
[[] merchant_state string Min Max Concat Count First Last Lag Lead

DSS %

Interpret the output

After running the recipe, we can see our new columns in the output dataset:

» purchase_amount_avg

e purchase_amount_sum.

We can now filter by merchant ID and subsector to see the average and sum of purchases for
this grouping within the defined window frame of the past three days.

A Visual Recipes 102 o= Datasets Dataiku Academy Q Search DSS.
@ transactions_windows E Summary Explore Charts Statistics Status History Settings (@ PARENTRECIPE ACTIONS
Viewing dataset sample configure sample DISPLAY ~ 2= (m
v merchant_id merchant_subsector 142 matching rows
1 purchase_date purchase_amount Y merchant_id Y merchant_subsector card_id merchant_state purchase_amount_avg purchase_amount_sum
date double string string string string double double
Date Decimal Text Text Text US State Decimal Decimal

1389 2017-01-02T00:00:00.000Z 126.4 M_ID_384ffelbef C_ID_ebdd8351c5 Kansas 126.4 126.4
4248 2017-01-10T00:00:00.000Z 47.51 M_ID_384ffelbef carpentry k C_ID_c7c6196822 Kansas 45.915 91.83
4430 2017-01-10T00:00:00.000Z 44.32 M_ID_384ffelbef carpentry C_ID_d05479a737 Kansas 45915 91.83
5718 2017-01-14T00:00:00.000Z 34.62 M_ID_384ffelbef carpentry C_ID_1e93353d7f Kansas 34.62 34.62
6496 2017-01-16T00:00:00.000Z 135.33 M_ID_384ffelbef carpentry C_ID_8878eac4a9 Kansas 84.97500000000001 169.95000000000002
8900 2017-01-21T00:00:00.000Z 42.42 M_ID_384ffelbef carpentry C_ID_9390b4a8a0 Kansas 42.42 42.42
10011 2017-01-24T00:00:00.000Z 101.79 M_ID_384ffelbef carpentry C_ID_47941c6849 Kansas 53.400000000000006 160.20000000000002
9752 2017-01-24T00:00:00.000Z 15.99 M_ID_384ffelbef carpentry C_ID_7237295f06 Kansas 53.400000000000006 160.20000000000002
12536 2017-01-30T00:00:00.000Z 40.91 M_ID_384ffelbef carpentry C_ID_acb4360974 Kansas 40.910000000000004 40.910000000000004
13379 2017-02-01T00:00:00.000Z 50.29 M_ID_384ffelbef carpentry C_ID_00f50add7b Kansas 45.6 91.2
13500 2017-02-02T00:00:00.000Z 81.85 M_ID_384ffelbef carpentry C_ID_ebdd8351c5 Kansas 59.0675 236.27
13464 2017-02-02T00:00:00.000Z 63.22 M_ID_384ffelbef carpentry C_ID_05230dd540 Kansas 59.0675 236.27
14157 2017-02-03T00:00:00.000Z 61.44 M_ID_384ffelbef carpentry C_ID_4871cf1b81 Kansas 64.2 256.8
15722 2017-02-07T00:00:00.000Z 34.4 M_ID_384ffelbef carpentry C_ID_3bb6a6012c Kansas 34.40000000000003 34.40000000000003
18397 2017-02-13T00:00:00.000Z 24.72 M_ID_384ffelbef carpentry C_ID_95259ba4d0 Kansas 24.720000000000027 24.720000000000027
22479 2017-02-22T00:00:00.000Z 34.4 M_ID_384ffelbef carpentry C_ID_3bb6a6012c Kansas 34.40000000000003 34.40000000000003

What's next?

Continue learning about this recipe by working through the Tutorial | Window recipe article.

O Tip

You can find this content (and more) by registering for the Dataiku Academy course, Visual Recipes. When
ready, challenge yourself to earn a certification!

Copyright © 2025, Dataiku
Made with Sphinx and @pradyunsg's Furo

https://knowledge.dataiku.com/latest/data-preparation/visual-recipes/tutorial-window-recipe.html
https://academy.dataiku.com/visual-recipes
https://academy.dataiku.com/page/certifications
https://www.sphinx-doc.org/
https://pradyunsg.me/
https://github.com/pradyunsg/furo

