
 » Machine Learning & Analytics » Generative AI and Large Language Models (LLMs)

Tutorial | Build a multimodal
knowledge bank for a RAG project

Get started
The Embed documents recipe in Dataiku allows you to augment Large Language Models

(LLMs) with specialized internal knowledge from your organization to increase the relevance

and accuracy of the model responses.

It can process documents of different formats (.pdf , .docx , .pptx , .txt and .md) and thus

generates a multimodal knowledge bank.

In this tutorial, we’ll use the Retrieval Augmented Generation (RAG) approach to enrich an LLM

with content from various Dataiku documentation resources to help Dataiku users find relevant

answers to their questions.

Objectives
In this tutorial, you will:

Use the Embed documents recipe to extract the data from selected pages of the Dataiku

documentation and vectorize it into a multimodal knowledge bank.

Create a prompt in the Prompt Studio to evaluate the response from the augmented LLM.

Prerequisites
To use the Embed documents recipe, you’ll need:

Dataiku 13.4 or later.

An Advanced Analytics Designer or Full Designer user profile.

A compatible code environment for retrieval augmented models.

A connection to a supported embedding model for text embedding in the Embed recipe.

A connection to a supported Generative AI model, which is the model that will be

augmented. See LLM connections for details.

https://knowledge.dataiku.com/?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144
https://knowledge.dataiku.com/?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144
http://127.0.0.1:8000/ml-analytics/index.html
http://127.0.0.1:8000/ml-analytics/gen-ai/index.html
https://doc.dataiku.com/dss/latest/generative-ai/rag.html?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144
https://doc.dataiku.com/dss/latest/generative-ai/rag.html?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144#install-and-enable-the-rag-code-env
https://doc.dataiku.com/dss/latest/generative-ai/rag.html?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144#embedding-llms
http://127.0.0.1:8000/ml-analytics/gen-ai/concept-llm-connections.html
https://doc.dataiku.com/dss/latest/generative-ai/llm-connections.html?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144
https://knowledge.dataiku.com/?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144
https://knowledge.dataiku.com/?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144

You do not need previous experience with Large Language Models (LLMs), though it would be useful to read
the article Concept | Embed recipes and Retrieval Augmented Generation (RAG) before completing this

tutorial.

Create the project

You can also download the starter project from this website and import it as a zip file.

Add the Embed documents recipe
This section will guide you through the creation and configuration of the Embed documents

recipe.

Create the Embed documents recipe
Let’s first create the Embed document recipe from the data that is stored in the managed

folder.

Tip

Dataiku 13.3+ Dataiku Pre-13.3

1. From the Dataiku Design homepage, click + New Project.

2. Select Learning projects.

3. Search for and select Multimodal Embedding.

4. Click Install.

5. From the project homepage, click Go to Flow (or g + f).

Note

http://127.0.0.1:8000/ml-analytics/gen-ai/concept-rag.html
https://cdn.downloads.dataiku.com/public/dss-samples/TUT_LLM_MULTIMODALEMBEDDING/?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144

To do so:

1. In the Flow, select the dataiku_doc managed folder.

2. Go to the Actions tab and click Embed documents under the Visual Recipes section.

3. In the New embed documents recipe window:

Keep the selected input.

In the Vision language model field, select an LLM connection that will be used for the

VLM extraction to generate a RAG-friendly summary in order to ensure that the extracted

content is concise and more likely to fit within the embedding model’s size limits.

Name the output knowledge bank multimodal_knowledge_bank .

In the Embedding model field, select a model you can use for text embedding (i.e. text

vectorization, which means encoding the semantic information into a numerical

representation).

Keep the default ChromaDB vector store type.

4. Click Create Recipe.

Configure the Embed documents recipe
Now, it’s time to configure the recipe.

The settings page of the Embed documents recipe allows you to select the extraction strategy

to use depending on the file types.

https://doc.dataiku.com/dss/latest/generative-ai/rag.html?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144

As shown above, by default, the recipe offers to use the:

VLM extraction for .pdf or .pptx files.

Structured text extraction for .txt or .md files.

As we also have a Word document (.docx) in our source folder, let’s add an extraction rule and

manage some advanced settings.

1. In the first block, click + Add a Condition.

2. In the new condition that appears, enter .docx to add this extension.

3. Click the Show advanced settings to check the extraction rules.

4. In the Select a model to use field, ensure that the LLM connection is the one you selected

upon creating the recipe, for the summarization of your documents.

5. Leave all other options unchanged and click Run to create the knowledge bank, which is the

object that stores the output of the text embedding.

Once the run is over, if you look at the Flow, you’ll see two outputs of the Embed document

recipe:

Output Description

dataiku_doc_embedded_images Includes all images taken from the documents, the

content of which has been extracted using the VLM

extraction.

multimodal_knowledge_bank Stores the output of the text embedding.

Configure the knowledge bank
Now that the Embed documents recipe has created the knowledge bank object in the Flow,

let’s configure it to augment the LLM.

1. From the Flow, double-click multimodal_knowledge_bank to open the knowledge bank

settings page.

2. In the Usage tab, to configure the LLM that we’ll augment with the content of the Dataiku

documentation, click the + Add Augmented LLM button and fill in the fields as defined

below:

Leave the generated Augmented LLM ID field as is or enter any other ID you wish using

the pen icon.

In the LLM field, select the LLM that you want to augment (here, GPT-4).

Set the Number of documents to retrieve option to 5 .

Enable the Improve diversity of documents option and keep the default values for the

diversity options.

Keep the Print document sources option set to Metadata & retrieval content to ensure

that Dataiku adds to LLM responses details on the sources used to generate each

response.

Keep the other options unchanged.

3. Go to the Settings tab and set the Core settings subtab as follows:

Keep the embedding model and vector store type. These are the ones you selected upon

creating the Embed documents recipe.

By default, the Code env option should be set to Select an environment and the

Environment option to the relevant code environment.

Unless you have a specific installation, set the Container option to None - use backend

to execute.

4. Click Save.

5. Return to the Flow (press g + f).

6. Double-click the embed recipe and click Run again to take into account the changes in the

knowledge bank settings.

In this tutorial, we need to re-run the recipe because we changed the settings in the Core settings tab. If you
just change the settings of the Usage tab, there’s no need to run the recipe again. Changes are automatically

taken into account.

With this configuration, we augment the LLM with the content of the articles stored initially in

the dataiku_doc folder and ask that the LLM uses the five top documents among the 20

documents closest to the query to build an answer in plain text.

As we enabled the Print document sources option, when testing the augmented LLM in the

Prompt Studio (see section below), Dataiku will display the five sources that the model used to

generate the answer. Additionally, with the Include text option enabled by default, the model

will also include the retrieved text from the retrieval column of each source used.

Test the augmented LLM in a Prompt
Studio
Now, let’s see how the augmented LLM responds to a prompt.

Note

https://doc.dataiku.com/dss/latest/generative-ai/rag.html?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144#install-and-enable-the-rag-code-env

Create the Prompt Studio
The first thing to do is create a Prompt Studio.

1. Go back to the Usage tab of the knowledge bank and click Test in Prompt Studio next to

the augmented LLM.

You can also access the Prompt Studios by selecting Visual ML () > Prompt Studios in the top naviga‐

tion bar.

2. Give the new studio the name dataiku_documentation .

3. Click Create. It opens the Prompt design page.

Design a prompt
On the Prompt design page, we’ll add our prompt text and run a test using the augmented

Tip

http://127.0.0.1:8000/ml-analytics/gen-ai/concept-prompt-studio.html

LLM.

1. In the left panel of the studio, click + Add Prompt.

2. Select Managed mode > Blank template > Create.

3. In the LLM option, ensure that the augmented LLM in the Retrieval augmented section is

selected.

The name for an augmented LLM is Retrieval of <knowledge_bank_id>, using <augmented_model_name> .

If you augment the same model more than once using the same knowledge bank, the LLM ID you set is

added: Retrieval of <knowledge_bank_id> (id: <llm_id>) using <augmented_model_name> .

4. In the Prompt field, copy and paste the following prompt. Use the Copy button at the right

of the block for easier copying.

3. On the right, in the Inputs from dropdown menu, select Written test cases.

Feel free to rename the Description field. Instead of input, you can enter Question for instance. This

changes the column header under Test cases.

4. Under Test cases, click + Add Test Case to add a test to gauge how our model runs the

prompt as it is.

5. Copy and paste the following text into the input box:

Note

You're an expert in Dataiku and rely on the knowledge from the Dataiku documentation.

Note

6. Click Run Prompt to pass the prompt and test case to your selected model.

The results may differ from those above, as LLMs do not generate the same response every

time.

What's the difference between the Group and Window recipes?

Concretely, here’s what happened upon running the test:

1. Based on the initial prompt you enter, the knowledge bank identifies five chunks of text that

are similar to the prompt. You see them in the Sources section at the bottom of the

response.

Why five? This is because we asked to retrieve only five documents in the Documents to retrieve option
of the Usage tab of the knowledge bank.

2. These five text chunks are fetched from the knowledge bank and the text from their retrieval

column is added to the prompt.

3. The LLM generates a response based on this augmented prompt.

4. Dataiku adds the metadata (here, the original article URLs and raw content) in the Sources

section at the bottom of the response.

What’s next?
Now that you know how to augment an LLM with your specific knowledge, you could:

Create a chatbot using Dataiku Answers.

Create a dataset with some questions to use it for test cases in a Prompt Studio, then create

a Prompt recipe from it.

For more information:

On the Embed documents recipe and the RAG approach, see the Concept | Embed recipes and Retrieval
Augmented Generation (RAG) article. (WIP)

On LLM evaluation, see the Tutorial | LLM evaluation article.

On guardrails, see the content moderation and sensitive data management.

Copyright © 2025, Dataiku
Made with Sphinx and @pradyunsg's Furo

Note

See also

https://www.dataiku.com/product/key-capabilities/dataiku-answers/?__hstc=19301799.89b11bdc13c7986130dca78230172501.1729505138806.1738661612080.1738677344773.84&__hssc=19301799.8.1738677344773&__hsfp=2623280144
http://127.0.0.1:8000/ml-analytics/gen-ai/tutorial-prompt-engineering.html
http://127.0.0.1:8000/ml-analytics/gen-ai/concept-rag.html
http://127.0.0.1:8000/ml-analytics/gen-ai/concept-rag.html
http://127.0.0.1:8000/ml-analytics/gen-ai/tutorial-llm-evaluation.html
http://127.0.0.1:8000/ml-analytics/gen-ai/concept-genai-guardrails.html#llm-content-moderation
https://www.sphinx-doc.org/
https://pradyunsg.me/
https://github.com/pradyunsg/furo

